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SUMMARY

The work summarized in this report covers the sixth quarter of a program with a
goal that is threefold: first, to study the properties of native point defect in infrared
focal-plan array (IRFPA) active and substrate materials; second, to study the prop-
erties of native point defects in two classes of photonic materials, the wide-gap I1-VI
compounds (ZnSe as the prototype for which impurity properties will also be calcu-
lated) and the nonlinear optical materials (LiNbOs as the prototype); and third to
study the properties of HgZnTe as a VLWIR detector material. Our accomplishments
in the sixth quarter include

9 Completion of an extensive paper on native point defects in Hgo.sCdo.2Te
as a function of processing conditions for submission to Physical Review
B.

e Calculation of the binding energy of a mercury vacancy tellurium anti-
site defect complex in Hgo.sCdo.2Te and estimates of the complex den-
sity and its consequences on materials processing and device perfor-
mance.

e Completion of the defect formation energies in CdTe, including gradient
corrections to the local density approximation.

* Completion of the defect formation energies in ZnSe, including gradient
corrections to the local density approximation, and estimates of the
neutral defect concentrations.

* Continued calculation of the defect ionization energies in CdTe, ZnSe,
and LiNb0 3.

* Preliminary prediction of the defect densities in z = 0.17 LWIR Hgl-,Zn:Te.

* Continued development of a method to calculate the temperature de-
pendence of the semiconductor bandgaps, with initial agreement at
300 K both for Hgo..sCdo.22Te and GaAs.

Modification of our thermodynamic codes for the LiNbO problem so
that the stoichiometry and temperature may be specified and the defect
densities determined.
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1. NATIVE POINT DEFECTS IN HgCdTe AND RELATED IR MATERIALS

1.1 NATIVE POINT DEFECTS IN Hgo.eCdo.JTe

We have completed an extensive paper on the native point defects in HgosgCdo 2Te;
a copy of this paper is included as Appendix A.

1.2 MERCURY VACANCY TELLURIUM ANTISITE COMPLEX

We have completed a preliminary calculation of the mercury vacancy tellurium
antisite electronic binding energy and find an energy of 1.1 eV per pair. This binding
energy corresponds to the reaction

VHgTe + TeHsTe -- (VHsTe + TeHgTe)p,i,. (1)

From the density of the isolated mercury vacancy, VHg, and tellurium antisites, TeHg,
the density of the pair, (VHsTe + TeHgTe)pi,, can be calculated via the mass action
relation

[VHgTe] [TeHgTe]
[VHSTe + TejgTe] ,," = (2)

If we assume that the defect formation free energy from changes to the vibrational
spectrum are similar for the isolated defects and the pair, we can calculate the reaction
constant as

.1 /1.1eV(3
K,..i = 12[1.]- exp (1.1e-T (3)

where [Is] is the density of lattice sites. The factor of 12 is the number of second
nearest neighbor sites (but first nearest cation neighbor sites) and accounts for the
degeneracy in the number of ways a pair can be formed in which one of the pairs
occupies a particular lattice.

Applying the reaction constant, we have calculated the number of pairs present
in material equilibrated at 500C for the mercury-rich and tellurium-rich conditions.
Results are summarized in Table 1. We have also estimated the concentration of
tellurium antisites present following a low-temperature (2500C) mercury-saturated
anneal, assuming that the mercury vacancies can reach equilibrium, but that the
tellurium antisites are frozen-in at their 5000C levels. The freezing-in of the anti-
sites is proposed because of the slow diffusion rate expected for this defect at lower
temperatures; in this example we have assumed that the tellurium antisite diffusion
effectively stops at 5000C, and therefore the antisites are frozen in at their 5000C
levels. In contrast, if the tellurium antisites are assumed to fully equilibrate at 250*C
their concentrations would only be - 6 x 106 cm-3. At this point we do not know
at what temperature the tellurium antisite diffusion effectively stops; this will be de-
termined by the concentration of the vacancy-antisite pairs if the antisite diffusion
is via a vacancy mechanism. An estimate of the critical temperature at which the
tellurium antisite diffusion ceases and the frozen-in tellurium antisite concentrations,
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[Teag], will be made next quarter. If [TeHa] :- 1014 - -1013 cm- 3 , this will be an in-
dication that the antisite is the residual donor and will allow us to develop strategies
for reducing the residual donor density.

Table 1. Neutral defect concentrations including the mercury vacancy tellurium
antisite pairs. For 5000C, full equilibrium is assumed achieved. For the 250*C
mercury-saturated anneal, the total tellurium antisite concentrations are assumed
frozen-in at their 500T levels.

Annealing condition 'VH ](cm-a) T [VHCTe]1,,(cm-3 )

T=500°C; Te-saturated 9.62 x 1013 2.20×i 01 2.58 x101"
T=5000C; Hg-saturated 1.37 X 101' 4.50 x 1012  7.52 x 1011
T=250°C; Hg-saturated following
a T=500°C; Te-saturated anneal 3.58x109 2.30x1015  3.00 x×10'
T=2500C; Hg-saturated following
a T=500"C; Hg-saturated anneal 3.58x109  1.06X1013  1.37 x10 12

1.3 NATIVE POINT DEFECTS IN CdT.

We have completed the calculation of the electronic contribution to the native
point defect formation energies in CdTe using the full-potential local-density ap-
proximation with the linearized muffin-tin orbital (LMTO) basis. Gradient correc-
tions were also computed. These two contributions defect formation energies are
listed in Table 2. These energies can be used to predict the neutral native defect
concentrations; this calculation will be completed next quarter. The corresponding
numbers for HgTe are listed in Table 3. One should not try to infer the primary
defects from the defect formation energies alone, without considering the vibrational
entropy and vapor phase chemical potential contribution to the defect formation free
energies.
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Table 2. Neutral native point defect formation energies in CdTe. LDA is the
contribution from the local-density calculation and GC is the correction from the
gradient correction energy.

Defect Defect reaction LDA GC Total
Vcd CdTe -* VcdTe + Cdf,., 4.152 -0.463 3.689
VTO Cdi,.. -- CdVT. 0.870 +0.315 1.185
CdT. 2Cd,,.. " CdCdT. -1.212 +1.091 -0.121
Tecd 2CdTe - TecdTe+ 2Cdf,.. 7.062 -1.150 5.912
Cdlcd Cdf,.. - Cd 1c, 0.384 0.450 0.834
CdIT. Cdf,.. - Cd1 ,* 5.424 -0.698 4.726
TeICd CdTe - Te1c + Cdf,.. 0.546 0.391 0.937

1.4 TEMPERATURE-DEPENDENT BANDGAP

When the temperature of the lattice is increased, the lattice expands. This ex-
pansion, usually called dilation, decreases the bandgap. The number of phonons in
the lattice increases with temperature. The change in potentials caused by the dis-
placement of atoms from their equilibrium positions introduces an electron phonon
interaction. These interactions, viewed as a perturbation, will change the electronic
states, that is, the band structure. A major contribution to the bandgap change with
temperature arises from this interaction.

The electron acoustic phonon interactions are usually parameterized in terms
of wave-vector- and energy-independent deformation potential coupling constants.
These constants are extracted from hydrostatic experiments that measure the change
of symmetry point energies with pressure. In addition, only a few phonons, such as
r, X, or L, are used; the measured atomic displacements due to other phonons are
virtually unknown. Although these calculations based on this procedure yield cor-
rect trends in large-gap materials, the uncertainty in measured values, and hence the
input parameters, yields ambiguous results for small-gap semiconductors.

Our calculations generalized the above approach considerably. We use accurate
tight-binding band structures in the calculation of the dynamical matrix and electron-
phonon interaction. In addition, we include contributions from all six phonon modes,
with wave vectors spanning the entire Brillioun Zone.

These calculations require knowledge of spatial dependence of atomic potentials in
the bulk. We assume that attractive interatomic matrix elements vary as r"' and the
Coulomb repulsive interaction varies as V0/r 2

m. The two unknowns, m and V0, axe
adjusted so that total energy calculations yield an accurate equilibrium bond length
and bulk modulus.

Once the spatial dependence of potentials is known, the dynamical matrix, which
is the second derivative of the potential divided by the appropriate atomic mass, is

3



calculated and diagonalized to obtain the atomic displacements for a given phonon
wave vector and branch.

Because the atomic displacements are small compared to the bond length, the
change in potentials is obtained by a Taylor's expansion and only the first two terms
are retained. The change in energy state at a given electron wave vector is obtained
in a second-order, stationary-state perturbation theory. This procedure is usually
called a rigid ion approximation.

Summarizing the steps involved in the calculations; (a) Choose the energy state
whose temperature variation needs to be obtained. Get the corresponding electron
wave vector, k. (b) Choose a phonon wave vector, q. (c) Calculate the dynamical
matrix and diagonalize it to get the atomic displacements for all six modes, (d) From a
knowledge of first and second derivatives of the potentials in the local basis, calculate
the matrix elements, < kIH 1 Ik > and I < k - qIH2 1k > 12. (e) From the potential
well expressions derived from second-order pertubation theory, the change in energy
is obtained. The calculation of energy gap variation requires repeating the above
procedure for conduction and valence band edge.

The calculations are carried for the Hgo.7sCdo. 22Te alloy.
The calculated change in the gap at 300 K is 95 meV, which is in excellent agree-

ment with the experimental value of 98 meV. We are currently calculating the change
for a larger temperature range in various semiconductors. The results will be provided
in the next report.

2. NATIVE POINT DEFECTS IN LWIR HSZnT@

We have estimated the concentrations of native point defects in x = 0.17 Hgl_.Zn=Te
based on our results in z = 0.2 Hgi-..Cd.Te. Both materials consist mostly of HgTe,
the primary difference being the difference in the lattice constants of the material. For
HgCdTe (at any x) the lattice constant, a, is 6.454 A, while for z = 0.17 Hgl-.ZnTe
a = 6.378; we have used an elastic continuum model to estimate the native defect
formation energy change due to this difference in lattice constant. Results of this
calculation are given in Table 3.

We have calculated the total (neutral plus ionized) native defect concentrations for
LWIR HgCdTe and HgZnTe under mercury-saturated conditions and as a function
of temperature; results are given in Figure 1. In this calculation we have assumed
that the band structure and its temperature dependence are the same in HgZnTe and
HgCdTe. While this is not likely to be rigorously true, the experimental data base for
HgZnTe is far more limited and thus we are forced to make this approximation. Once
we have completed our calculation of the temperature dependence of the bandgap,
we will calculate the band structure properties for HgZnTe rather than borrow them
from the HgCdTe experiments.

From Figure 1 we see that the mercury vacancy, tellurium antisite, and mercury
interstitial densities in HgZnTe are all approximately a factor of two smaller than in
HgCdTe. This difference is still subject to refinement and may increase. However
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at present predicted differences in mercury vacancy and mercury interstitial densities
do not account for the experimentally observed difference in the mercury diffusion
ratw between the two materials and the superior bake stability of HgZnTe. We thus
tentatively conclude that this difference in diffusion rates is not due to differences in
the concentration of the diffusion species, but rather must be due to differences in
the migration energy of the vacancies and interstitials in the two materials. Because
the average lattice spacing in HgZnTe is smaller than that in HgCdTe, a smaller
migration energy in HgCdTe is expected.

Table 3. Electronic contribution to the native defect formation energy in HgCdTe
and Hg0 .17Zno.&3Te.

Defect HgCdTe HgZnTe
VHg 2.09 2.14
VT. 1.47 1.52
TeHs 0.46 0.53
HgT* 3.12 3.17
Hg11 , 1.21 1.27
HgjT, 1.12 1.16
Tel.. 3.38 3.42
TeIT. 3.37 3.45

3. WIDE-GAP II-VI COMPOUNDS (ZnSe AS PROTOTYPE)

We have completed the calculation of the native point defect formation energies in
ZnSe using the full-potential local-density approximation with the linearized muffin-
tin orbital (LMTO) basis. Gradient corrections were also computed. Preliminary
results using a small basis set size were given in QuaXterly Technical Report 3. The
calculations completed this quarter use a more converged basis set. The energies are
summarized in Table 4. The defect formation energy and energy coming from the
modifications in the vibrational modes of the system were reported in Quarterly Tech-
nical Report 3. Direct interpretation of the numbers appearing in Table 4 is difficult
because these energies do not include the chemical potential of the free Zn atom,
which can be substantial; this chemical potential is included in our quasichemical
analysis of the defect concentrations.
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Table 4. Neutral native point defect formation energies in ZnSe. LDA is the
contribution from the local-density calculation and GC is the correction from the
gradient correction energy.

Defect Defect reaction LDA GC Total
VZn ZnSe .. VznSe + Zgfjee 5.089 -0.460 4.629
Vs. Znfee - ZnVse 0.716 +0.322 1.038
Zns. 2Znfr., . ZnZns. -1.373 +1.002 -0.371
Sez. 2ZnSe - Sezý,Se + 2Znf,.. 9.574 -1.158 8.416
Zn11, Zn 7., --. Znl,, 1.103 +0.318 1.421.
Znr,,. Zn1 , 6  --. , Znr,. 1.358 +0.258 1.616
Seiz.3  ZnSe - Se1,,. + Znf,... 7.545 -0.748 6.797
Se__. ZnSe - Seis. + Zn17.. 9.098 -0.854 8.244

In Figure 2 we show a plot of the neutral defect concentrations as a function of zinc
pressure over the single phase stability region for material equilibrated at 600*C. The
zinc vacancy, Vzn, and the selenium antisite, Sez., are the dominant defects, although
even at this elevated temperature their concentrations are not comparable to desired
dopant concentrations and therefore might be dismissed as potential compensating
defects. Because we have not yet included the ionization states of these defects,
this conclusion must be viewed as very tentative. We are currently working on this
problem.

Although we have calculated the neutral native defect concentrations at 600°C,
in fact we are interested in what happens in the material at the low temperatures
used during molecular beam epitaxial (MBE) growth. While the calculation of the
equilibrium defect densities at lower temperatures is straightforward, a number of
complexities must be considered. First, the effective zinc and selenium pressure dur-
ing the growth must be determined so that the chemical potential of these species in
the solid can be specified. Second, there is a question about whether MBE growth
constitutes an equilibrium, quasiequilibrium, or highly nonequilibirium process. De-
pending on which of these most closely describes the experimental conditions used,
we can determine the applicability of an equilibrium or constrained quasiequilib-
rium quasichemical analysis to the problem. It is most likely that MBE growth of
ZnSe constitutes a quasiequilibrium situation, in which case there are straightforward
modifications to our present formalism that will permit us to calculate the defect con-
centrations under quasiequilibrium conditions. We have a theory of MBE growth of
wide-gap semiconductors mostly cnnompleted. However, completing it and applying
it to this problem is not possible at our current funding level. Therefore, to proceed
for now, we will make an educated guess at what is happening on the growth surface.
Finally, one must consider the mobility of the native defects in the MBE materiai d-ir-
ing growth, both on the surface and in the bulk, to determine whether equilibrium
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or quasiequilibrium can be reached. It is doubtful that defects such as the selenium
antisite will equilibrate once they are locked into the bulk, because the diffusion of
this defect is likely to be complex, involving one or more additional native defects.
We are prepared to address these important issues in our future work.

This quarter we spoke with Dr. M. Haase at 3M Corporation and Dr. Diego
Olego at Philips Laboratories about our work in ZnSe to explore areas in which our
theory might be of assistance to their experimental program. A summary nnnof this
correspondence is included as Appendix B.

4. NONLINEAR OPTICAL MATERIALS (LiNbO AS THE PROTOTYPE)

We have modified our quasichemical programs that predict the native defect con-
centrations in a binary or pseudobinary material as a function of the temperature and
chemical potential, to allow the specification of the temperature and the material sto-
ichiometry as the exte i -.1parameters. This modification is necessary to calculate the
defect concentrations in LiNb0 3, which, when grown congruently, is known to have
a lithium-to-niobium ratio of 0.486:0.514. By specifying this stoichiometry in our
mass action formalism, we can then predict the concentrations of the native defects.
The complexity comes in first choosing the candidate defects that might account for
the nonstoichiometry and secondly to calculate the formation energy of these defects.
Several models of defects to account for the lithium-to-niobium ratio have been pro-
posed in the literature, which we have discussed at some length in previous reports,
and from which we have chosen several candidate native point defects for calculation
of the native point defect densities. Several of the models involve extended defects
such as stacking faults which will not be included in our analysis.

We are currently working on the determination of the ionization states of the native
defects in LiNb0 3 so that we may predict the density of both neutral and ionized
defects. Another ingredient necessary in the calculation of the ionized defect densities
is the intrinsic reaction constant that depends on the band structure properties of the
material. Unfortunately, for LiNbO3 there is less experimental information available
on the band structure properties than in the other systems we are studying and
therefore we must rely on our own calculations of the electron and hole effective
density of states for the determination of the intrinsic reaction constant. We have
begun to extract these parameters this quarter. Once these native defect ionization
energies and the intrinsic reaction constant are determined, we can then predict the
native defect concentrations as a function of the lithium-to-niobium ratio.

5. WORK PLANNED

In the next quarter we will continue to study the mercury vacancy tellurium anti-
site defect complex in HgCdTe. Strategies for improving the calculation of the defect
densities in HgZnTe will be investigated. We will continue our study of defects in
CdTe, ZnSe, and LiNb0 3 this next quarter, focusing on the defect ionization energies.
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Once the defect ionization energies are calculated in CdTe and ZnSe, the prediction
of the defect densities will be straightforward. We will extract the band structure
properties of LiNbO3 for input into the defect density calculation. We will continue
our work on the temperature dependence of the bandgap in the semiconductors.
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First-principles calculation of native defect densities in HgosCdo.2 Te

M. A. Berding, M. van Schilfgaarde, and A. Sher
SRI International, Menlo Park, Cealiornia 94055

(March 2, 1994)

We use a quasichemical formalism to make quantitative predictions of the native point defect
densities in HsgO.Cd0. 2 Te. The electronic contribution to the defect formation free energy is cal-
culated using the self-consistent first-principles full-potential linearised muffin-tin orbital method
and the local-density approximation. A gradient correction is added to the LDA result so that
absolute reference to the chemical potential of the mercury vapor phase can be made. A Green's
function approach based on a valence force field plus a point Coulomb model is used to calculate the
vibrational contributions to the defect free energy (both energy and entropy). We find the double
acceptor mercury vacancy is the dominant defect, in agreement with previous interpretations of
experiments. The tellurium antisite is also found to be an important defect in this material. Predic-
tions of the low-temperature hole concentrations are made as a function of annealing temperature
and compared with available experiments. The order of magnitude of our predictions agrees well
with experimental results, and discrepancies can be attributed to contributions to the free energy
that we have neglected or to inaccuracies in the intrinsic reaction constant used. Suggestions for
further experimental work are made.

61:72.J, 61:72.C, 71:35.G, 42:70.K

I. INTRODUCTION

The pseudobinary semiconductor alloy Hg1_,Cd,Te with z=0.22 is currently the material of choice for high-
performance detectors in the long-wavelength infrared (8-14 pm). Unlike other II-VI systems, both extrinsic p-
and n-type doping can be achieved in Ego.sCdo.2Te although in as-grown material the electrical properties are
often determined by native point defect concentrations. The dominant defect is believed to be a double-acceptor
mercury vacancyl; poet-growth low-temperature mercury-saturated anneals are routine for the reduction of the
mercury vacancy concentration. As in other semiconductors, it is more difficult to establish the presence and identity
of neutral and compensating point defects, much les to determine their concentrations. Diffusion measurements2

indicate the presence of mercury vacancies and mercury interstitials, as well as tellurium interstitial., although no
unambiguous determination of their densities can be made from these experiments.

Although extended defects such as dislocations often appear to be the performance limiter in current state-of-
the-art Hgo.gCdo.•Te devices,3-5 a number of mysteries still persist that may relate to native point defects. (1) For
operation at 40 K, there is a variation in RDAj and lifetime among pixels with no etch pits,' indicative of spatial
nonuniformity in the material that is unrelated to dislocations. (2) An as yet unidentified donor limits the minimum
n-type carrier concentrations obtainable during a mercury-saturated low-temperature anneal of the material. While
the pressure and temperature dependence of this residual donor does not appear to correlate with the equilibrium
dependencies of any native point defect,6 the nearly universal presence of the donor in liquid phase epitaxy (LPE),
solid-state recrystalized (SSR), and molecular beam epitaxy (MBE) materials and its elusive nature do suggest that
a native point defect is responsible. (3) Undoped LPE material that has been subjected to a low-temperature,
mercury-saturated anneal and nominally converted to n-type shows an anomalously low mobility. One interpretation
is that it is a consequence of interpenetrating p- and n-type regions, with the high effective-mass holes lowering
the measured Hall mobilities.7 If this model proves to be correct, it may well be a native point defect that causes
nonuniform annealing of the material. To overcome this low mobility, a donor impurity is added in concentrations
above that of the unknown residual donor. Thus, to lower the n-doping to desirable levels, an understanding of the
origin of the doping, and the low mobility and a recipe for its elimination are neeeded. (4) The identity of the primary
Shockley-Reed-Hall (SRH) recombination centers has not been established; if they can be correlated with native point
defects, strategies for their elimination can be developed. (5) MBE material is often n-type as grown8 and may be
related to a nonequilibrium population of native point defects.

Unraveling the matrix of usually indirect and often contradictory experimental data on the native point defects in
semiconductors is a complicated task, especially when the defects may be spatially varying. Numerous theoretical
efforts have utilized first-principles methods to elucidate the properties of native point defects in the group IV, HlI-V,
and I1-VI semiconductors (see for example Refs. 9-12). While these studies have led to much insight into the properties
of the point defects, no quantitative predictions of the defect densities were made. Several earlier theoretical studies
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have looked at the properties of defects in HgCdTe'3-" although once again no quantitative predictions of defect
densities were given.

Our goal in this paper is to theoretically identify the important native defects in HgCdTe, to calculate their densities
as a function of growth and processing conditions, to substantiate the experimentally deduced properties of the native
defects, and to begin to unravel the remaining mysteries in this material. To express the concentration of the native
point defects in terms of their formation free energies, we employ the quasichemical formalism. In addition to the
electron and hole, we have included eight native point defects (and their ionized species) in the analysis: the mercury
and tellurium vacancies, the mercury and tellurium antisites, and two types of mercury and tellurium tetrahedral
interstitials - one surrounded by four cation near-neighbors and one surrounded by four anion near-neighbors. As we
will show, we have attempted to incorporate all of the important contributions to the free energy and adopt a first-
principles approach for most of the quantities we calculate. The only significant empirical data we employ are those
needed to obtain the temperature-dependent intrinsic reaction constant. Our calculated native defect concentrations
are in quantitative agreement with the available experiment data. To our knowledge, this is the first attempt in
any material to carry through a comprehensive theory of the native point defect concentrations essentially from first
principles.

17

A number of features make our study of defects in Hgo.sCdo.2Te unique, and permit us to calculate absolute defect
concentrations:

(i) To calculate the electronic contribution to the defect formation free energies we employ the self-consistent first-
principles full-potential linearized muffin-tin orbital (FP-LMTO) method's and the local-density approximation.
The LMTO method is well suited for compounds containing d electrons, such as Hg_,CdTe.

(ii) Because the local-density approximation (LDA) overbinds, we have also employed gradient corrections to the
LDA of the Langreth-Mehl-Hu type.19 These corrections greatly improve the overbinding found in the LDA.2° We
believe the calculated energies are precise enough that we may make comparison with atoms referenced to the free
atom, and therefore by combining these energies with the translational energy of the atoms in the vapor phase, are
able to calculate the chemical potential for a monoatomic mercury vapor.

(iii) A Green's function formalism within a valence force model plus point-charge ionic model is used to calculate
the vibrational contribution to the defect formation free energy, both the enthalpy and entropy.

(iv) The combination of the electronic, translational, and vibrational free energies calculated in (i)-(iii) encompass
the primary contributions to the total defect formation free energies when referenced to a mercury vapor. The total
defect formation free energy is then incorporated into a quasichemical formalism,21 and predictions of absolute defect
concentrations as a function of the thermodynamic variables temperature and pressure can be made.

The remainder of the paper is organized as follows. In Section II we describe the quasichemical formalism used to
calculate the neutral native defect concentrations and its extension for ionized defects and alloys. The calculations of
the defect formation free energies are discussed in Sections III and IV for the electronic and vibrational contributions,
respectively. In Section V we present the results of our calculations and a comparison with available experimental
results. We end with a brief summary and conclusions of our work in Section VI.

II. DEFECT CONCENTRATIONS

A. Quasichemical formalism In compounds

We begin by outlining the formalism employed to calculate the defect concentrations in a compound as a function
of external parameters. In Section IIC we discuss extensions of the formalism necessary to treat the low-z alloy
Hg1-,CdTe.

The defect reactions for the compound AC to be considered in this paper are listed in Table I. We have chosen
the AC unit cell and A in the phase R as our reference states for the calculation of the reactions' free energies. From
Gibbs' phase rule we know that for a system of two components (A and C) and two phases (one of which is the AC
zinchlende solid) there are two degrees of freedom. For this paper we shall assume that temperature is one degree and
that the chemical potential of an external reservoir of A or C atoms is the other. The chemical potential is chosen to
be consistent with the experimental situation to be modeled. We shall choose our reference state to be the mercury
vapor and therefore choose to reference our reaction energies to the AC solid and AR, which will be taken as the
monoatomic mercury vapor (extensions of this analysis to the alloys are discussed in Section V).

Reference to other reservoirs can be obtained by considering the additional reaction

AC- Ai+ + CR (la)

or for molecular species as the reference
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AC A, +1LC, (lb)

where nj is the appropriate integer, and by taking linear combinations of these with the reactions in Table I.
We are not restricted to specifying the temperature and a chemical potential of one of the species as the two degrees

of freedom, but could choose instead another particular set, including, for example, the stoichiometry of the system.10

While other choices are possible, usually one does not know a priori the material's stoichiometry.
Assuming that the defect densities are small and that they are noninteracting, from the law of mass action we can

write the reaction constant for each of the neutral defect reactions in Table I as2 1,22

Kxx = Gexp - taT/= [Xf] (2)

where [X is the density of the neutral defect X, 0 is the number of unit cells per volume and converts [X from
site fraction to defects per unit volume, and Fx is the free energy for the neutral defect reaction. The free energy
for any defect X can be written as the sum

Fx = Fv + F#'@et + F•t"" + kIT ln(G), (3)

where ki is Boltzmann's constant and Fx*" is the vibrational, Fxfect is the electronic, and F1""J is the translational
energy contribution to the reaction free energy, and G accounts for the degeneracies of the reactants. In the quasi-
chemical approximation (QCA), G = (gcgD)/(gAgE) for the reaction A + B - C + D, where gi is the degeneracy
of reactant i. Once Fxx is know for a given reaction, Xxx can be evaluated and the defect concentration can be
determined. The difficulty, of course, is in the evaluation of Fxx, which is discussed in Sections III and IV.

B. Ionized defects and the intrinsic reaction constant

The above discussion applies to the neutral defect densities. In most semiconductors the native point defect will
have one or more localized levels in the band gap, allowing for multiple ionization states of the defect. We thus need
to calculate the concentration of these ionized defects, in addition to the neutral concentrations discussed above, to
obtain the total defect populations. Once the energies of the localized levels are determined (Section III E) their
populations can be calculated via

(X'] XeXpPFE- E.-kT + RX) (4)

for an acceptor and

EX'] L x-exp (Ed - r -M F- . + F*" (5)

for a donor state of the defect X. A bullet superscript indicates a positive charge and a prime a negative charge, Ea
and Ed are the acceptor and donor one-electron ionization energies with respect to the val, ce and conduction band
(both defined as positive for states in the gap), and MF is the Fermi energy. Although the last term in the exponential,
-F•.,, + pvib, should rightly be there, and corresponds to the difference in the vibrational free energy of the neutral

and ionizeddefect, it has never been considered previously and for the present we shall neglect it, too.
For multiply ionized defects with positive Hubbard U's (reactions 7 and 8 in Table I), the above expression for the

number of ionized acceptors generalizes to

[X1'] = gX,,exp (zpF - E .... E. -EFxv., + Fxv!) (6)[xx1 gx.
where z is an integer and E' is the ionization energy of the &"' ionization level. A similar generalization applies for
the donor levels.

For each ionized defect concentration, we introduced one equation. In addition, though, we have two new unknowns,
the Fermi energy and either the electron or hole concentration. Thus, two additional equations are needed.

First, we have the additional reaction for the generation of electron-hole pairs across the band gap, reaction 9 in
Table I, and the corresponding intrinsic reaction constant
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Kn = (h'](e'] = pv (7)

where p a [hl] and n =- [e']. In general, Kp, depends on the shapes of the conduction and valence bands, the band
gap energy, the Fermi energy (for degenerate statistics), and the temperature variation of these quantities. Several
limits are often encountered in the evaluation of Kn. First, when the conduction sad valence bands are parabolic,
although not necessarily isotropic, E o k2, and the reaction constant can be written in terms of the Fermi-Dirac
integrals as

K,, = 4 (12!k1 )3 (Mhi.)31 2

where r'1/2 is the Fermi-Dirac function; E,, E,, and pF are the conduction band, valence band, and Fermi energies,
respectively; mh and m. are the hole and electron density-of-states effective masses, respectively; and h is Planck's
constant. In the nondegenerate limit, this reduces to the familiar expression

K,. =4 (2rOT)3 (Mhm.)3/2 exp •(•- ) (9)

which is independent of the Fermi energy. For the general case, which will apply even at moderate temperatures for
narrow-gap HgCdTe, Kn depends on the extrinsic carrier densities through its dependence on MF. Moreover, the
conduction band in this narrow-gap material is not well represented by a parabola, but is rather more hyperbolic. 28

Because the hyperbolic dispersion relation approaches a linear dependence away from the band edge, we will for
the present assume a linear dispersion relationship of the form E = ak. In this case the intrinsic reaction constant
becomes

K,48y L) (10)

where •2 is Fermi-Dirac inteFral of order 2.
The requirement of charge neutrality leads to a second additional equation:

z • [Xi" + [e'] =[Xj'] + [h'] (11)

where i sums over the various defects and z sums over the various ionization states of the defect Xj.

C. QuasichemIcal formallsm in alloys

We wish to generalize the above formalism to the ideal cation substituted pseudobinary alloy A.-.BC. It is
perhaps easiest to demonstrate the generalization with a specific defect reaction, for example a neutral vacancy on
the cation sublattice. In the compound AC the formation reaction is given by reaction 1, Table I:

AC -- V1C + A (12)

where V. indicates a vacancy on the cation sublattice. In the alloy a neutral vacancy on the a sublattice can form
via the same reaction. The only difference comes in the evaluation of the reaction constant. In the compound the
vacancy density is given by

K- = 9exp(kFvxi (13)[v,] ex \kBT

while in the alloy it is given by

[V.'] = 0(1 - z)exp k 8 T (14)

A-5



where -FP, is the reaction free energy corresponding to Eq. (12) in the alloy. The factor of (1 - z) results from the
conflgurational entropy contribution to the chemical potential of A on a lattice site (Is), kBTln([Ai.]/[la]) - kwTin(z).
Because we have assumed that the defect concentrations are small, the configurational entropy contribution to the
chemical potential of A in the compound AC is kaTln([Ai,]/[la]) = 0. In both the compound and the alloy 0 is the

In addition to Eq. (12), in the alloy the vacancy on the a sublattice can also form via the reaction

BC --*V C + Bi. (15)

with

[v.'] = (x) ,p(1

where F. is the reaction free energy corresponding to Eq. (15) in the alloy. Now the vacancy concentrationsve,
predicted by Eqs. (14) and (16) must be equal and thus

(-,)exp (fýT = (z)exp [(7

It is apparent that this simply corresponds to the difference of Eqs. (12) and (15)

AR + BC -- AC + Bi (18)

that is, the exchange of an A and B on a lattice site, which is a reaction in the alloy in equilibrium with AR and BR.
An analysis similar to the above applies for the anion antisite, C., which also substitutes on the cation sublattice.

In the pseudobinary alloy, the vacancy free energies Fvx and F',. appearing in Eqs. (13) and (14) may be different.

The energy of a vacancy depends on the local configuation of tle surrounding lattice; this changes in the second
and more distant neighbor shells for the cation vacancy and the anion antisite in the cation substituted alloys. A
completely rigorous approach would treat each kind of vacancy uniquely; indeed in a previous work15 we found a
configuration dependence of the vacancy in the A0 .5B0 .5 C lattice, of several tenths of an eV, varying approximately
linearly in the number of A atoms in the second neighbor shell. Here, we have ignored this refinement and assumed
the A vacancy and C antisite surroundings are totally of species A. This is justified to some extent because we are
interested in low z compositions of Hg 1-,CdTe.

For defects on the C sublattice (e.g., the anion vacancy and the cation antisites) as well as interstitial atoms
in certain tetrahedral sites, one must more carefully consider the complications from the alloy, because disorder is
found already for nearest neighbors. For systems in which these classes of defects are important, the configuration
dependence of the surrounding sublattice must be taken into account. For low z Hg,-.CdTe we find the densities
of these defects to be quite low, and thus the error incurred in using the electronic energies calculated for the pure
AC compound will not impact the major conclusions of our work.

Finally, the band gap is one other important consideration when comparing the alloy to the pure compound. This
is of particular importance for the intrinsic reaction constant and we employed an empirical fit to the temperature
dependence of the alloy band gap and intrinsic carrier concentration that are used to calculate Kp,. This is presented
in detail in Section III G.

III. CALCULATION OF DEFECT FORMATION FREE ENERGY: ELECTRONIC CONTRIBUTION

A. Full potential LMTO calculations

Total energy calculations for the defect reactions were all obtained with a full-potential version2 4 of the LMTO
method, in the local density functional approximation of Barth and Hedin.2 5 This method has been tested extensively
for most of the elemental ap and d bonded solids, the II-VI, III.V and column IV semiconductors, and a host of other
solids. Our results, which will be reported elsewhere,20 show good agreement with experiments for all systems studied,
with small and systematic errors in structural and mechanical properties. The most prominent error, particularly for
the present purposes, is the overbinding of the solid.
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In the FP-LMTO method, the only important approximation we make beyond the local-density approximation, lies
in the treatment of the interstitial matrix elements. The LMTO method employs an atom-centered basis, represented
by Hankel functions in the interstitial. For the calculations presented here, the basis consisted of a "triple kappa" basis
22 orbitals per atom, with energies -0.01, -1, and -2.3 Ry for the a and p orbitals, and -0.01 and -1 Ry for the d.
Inside the muffin-tin (MT) spheres, wave functions are represented by spherical harmonics and numerically tabulated
radial functions. The electron density and potential can be similarly represented, since the density generated by a
Hamiltonian is obtained by summing over the eigenvectors. Outside the MT spheres, another treatment is necessary.
Methfessel2 s developed a simple, efficient way to represent the density and potential in the interstitial by extrapolation
from the edges of MT spheres, where the value is well known. The electron density is represented in the interstitial
as a linear combination of Hankel functions that are chosen to match the value and slope of the function at each MT
sphere. Two Hankels per site and Im are enough to match the values and slopes at all MT spheres. This representation
of the density throughout the interstitial is approximate, although it becomes exact near any MT sphere. Extensive
tests show that the approximation works very well for close-packed systems, but the errors can become significant
when the packing is poor. To ensure a good fit to the charge density and potential in the interstitial region of the
zincblende solids, we include empty spheres at each tetrahedral interstitial site (rendering the sphere packing bcc for
the ideal lattice). In addition, we added orbitals to the basis by centering them on the empty spheres. Addition of 2s
and 2p orbitals changed the energy by approximately 0.1 mRy/atom, showing that the basis is nearly complete.

To assess the validity of the interstitial approximation for the representation of the charge density and interstitial
matrix elements, an alternative approach was developed,2 4 which is similar to a procedure described by Jones.2 7 When
calculated in this way the total energies changed by approximately lmRy/atom, showing that the approximation is
a good one.

Both the charge density inside the spheres and the tails of Hankel functions centered on a neighboring sphere were
expanded to I = 6. We estimate that the error introduced by truncation at 1 = 6 to be about lmRy/atom, in line
with other errors in the method. The core was allowed to relax during the self-consistency cycle. The sernicore d
electrons in the tellurium were treated explicitly as valence states in a second panel; explicit treatment of these states
was found to introduce a small but significant correction to the total energy. For the 16-atom cells, the Brillouin
zone integrals were done by a sampling method for the charge density, and the linear tetrahedron method for the
band-structure energy, augmented by Bl6chl weights, and a mesh of four divisions was used (6 k-points). Checks
showed that this was sufficient to converge the energy to 1 mRy/cell.

B. Supercell approximation

Supercelis are used in which a periodic array of defects is constructed. Defect formation energies are calculated
from a difference in total energies of the compound with and without the defect. For example, if we denote tj(VA)
as the energy of a supercell containing j lattice sites and one A vacancy, the energy for defect reaction 1 in Table I is
given by

E(VA) = 4j(VA) + E(AR) - 46(AB) (19)

where E(AR) is the energy of an A atom in the reference state R and £j(AB) = jE(AB) where EAB is the energy
of an ideal AB unit cell. For some defects the number of lattice sites changes in the reaction; for example for the
formation of the B antisite via reaction 4 in Table I, the formation energy is given by

E(BA) = tj (BA) + 2E(AR) - Ej+ 2(AB). (20)

Because we wish to calculate the formation energies in the dilute limit, we use the largest supercell computationally
feasible. For this paper, all calculations were done using 16-atom supercells.

C. Gradient corrections to the local density

The local-density approximation generally overbinds the solids. Several systematic extensions of the local-density
function have been proposed that are based on generalized gradient approximation for the exchange and correlation
energies. We have considered one of these extensions, that proposed by Langreth and Mehl,19 and have examined
the systematics in the gradient corrections to the lattice constants, cohesive energies, bulk modulus, and other elastic
constants for a wide array of solids2 0 ; preliminary results of that work for the zincblende semiconductors are shown in
Table II. With few exceptions, the gradient correction systematically improves the prediction of the cohesive energy,
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although the prediction of the elastic constants often worsens slightly. The improvement in the cohesive energy is
largely due to improvement in the calculation of the total energy of the free atoms, rather than the solid.

Here, we are interested in calculating total energies for reactions in which a constituent is exchanged between the
solid and the vapor, and thus the errors inherent in the local-density calculation of the cohesive energy will be present
in these energies also. Because the relaxations do not change significantly when gradient corrections are added,
we have completed the majority of the calculation, including the relaxation, within the FP-LMTO. The gradient
correction energy, calculated at the LDA-deterrnined relaxed positions, is then added to the LDA energy.

D. Relaxation

In general the lattice relaxes in the presence of a defect, thereby lowering the lattice everty. In the dilute defect
limit, the radial relaxation of the lattice extends to infinity.28 In the supercells we account for this relaxation by
allowing the overall lattice constant of the supercell to relax to minimize the supercell total energy. Because HgTe
and CdTe are nearly lattice matched, and their elastic constants are the same, the defect relaxations in pure HgTe
should be comparable to those in the HgCdTe alloys. Second, for the most important defects, we permit the radial
relaxation of the defect near-neighbor atoms. For the on-site defects (the vacancies and antisites) we permit only the
nearest-neighbor atoms to relax. Estimates of these relaxation energies are given in Section V.

Relaxation energies are calculated only for the neutral defects and are assumed comparable in the ionized defects.
Nonradial relaxations such as the trigonal and tetragonal distortions that split the degeneracy of the triply degenerate
T 2 states may be important and may differ substantially for the different charge states of the system. Because the
symmetry of the distortion depends on the charge state of the defect, distortions and charge states must be treated
simultaneously. These distortions have not been considered in this paper.

E. Localized defect levels

The calculation of the ionization states of the defects is perhaps the most difficult part of the calculation of the
native defect concentrations, in large part because of the inadequacies of the LDA in predicting the band gap of
the semiconductors. This is additionally complicated by the fact tha' nur calculations were done for HgTe, which is
known experimentally to be a semimetal with a negative band gap of -U.3 eV, so that even if the LDA band gap were
correct, we would still have a zero-gap material. Furthermore, because the Coulomb fields associated with a defect
may be extended, we expect that very large supercells will be needed to isolate the localized levels of an individual
defect.

We have developed a method to calculate the location of localized defect levels in the band gap and have applied
it to the arsenic antisite defect in GaAs. This defect was chosen because of its technological importance and because
these levels have been determined experimentally by Weber et al.29 Calculations were done within the ASA so that
we could examine the convergence of our results going to large (128 atom) supercells. Our approach is similar to that
discussed by van der Waal et al.30 in which the shift in the Fermi level is examined as electrons are added to (or
removed from) the defect, with a compensating uniform background charge added so as to maintain charge neutrality.
We find good agreement with experiments of the two antisite donor levels. We also have found these energies agreed
closely with the positions of peaks in the density of states, when referenced to the top of the valence band. Details of
the calculation will been given elsewhere.

Because the compositions of HgCdTe of interest here have narrow band gaps, the determination of the exact location
of the defect levels in the band gap is not as important for the purpose of calculating the defect concentrations as
in a wider-gap semiconductor such as GaAs, although the identification of the position of defect levels is useful in
understanding mechanisms limiting carrier lifetimes. We have used the 54-atom supercells of HgTe to determine the
type (acceptor or donor) of the various native defects based on the position of the Fermi level with respect to the
states that lie within - 0.1 eV above the valence band edge. In addition, an assessment of whether the state is a
single or double donor or acceptor and whether the state is shallow or deep has been made based on the position
of the density of states peaks. For the mercury vacancy, we follow the arguments of Cooper and Harrison,sI and
assume that it is a negative-U center, with the neutral and double acceptor states being the only observable states;
this assumption is consistent with the observation that the mercury vacancies are always found to be doubly ionized
acceptors.'
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F. Ionization state degeneracy

The degeneracy of the various ionization states of each defect may differ and must be determined3 2 to complete
the calculation of the density of ionized defects. As an example, we consider the A vacancy in a II-VI material, and
use tight-binding language for the purpose of discussing the defect states. There are four dangling anion hybrids,
each donating 1.5 electrons to the system, for a total of six electrons at the vacancy site. Although we have not
explicitly calculated it, for the purpose of computing state degeneracy, we assume that a symmetry lowering Jahn-
Teller distortion will take place whenever there is a state degeneracy beyond two (for spin) and a partial occupancy
of that state. Thus, we assume that the highest filled vacancy level in the neutral state is doubly occupied with one
electron spin-up and one spin-down, and that the level can accept no other electron. Because there is only one unique
configuration for this state, the state has a degeneracy of one. For the single acceptor state in which one electron
has been added to the vacancy, the extra electron can either go in spin-up or spin-down, with equivalent energies.
The degeneracy of the state is therefore two. Finally, if the vacancy is a doubly ionized acceptor, the lowest energy
configuration for the two additional electrons is with one spin-up and one spin-down, with a net state degeneracy of
one. This assignment of degeneracies - one, two, and one for the neutral, singly ionized, and doubly ionized acceptor,
respectively - will hold even if the state is a Hubbard negative-U state, although in this case, the singly ionized state
will not be occupied.

A similar argument follows for the other donor and acceptor defect levels. In general, for the II-VI materials we
find a degeneracy of one for the neutral defect state, two for the singly ionized state, and one for the doubly ionized
state.

G. Intrinsic reaction constant

We are interested in calculating native point defect densities at the relatively high temperatures at which equilibra-
tion occurs. It is difficult to calculate Kp, theoretically because of the difficulty in calculating the finite-temperature
band structure; in general the band gap and the conduction and valence band shapes are all temperature dependent.
An additional complexity in calculating K,,, in low z Hg 1 .,CdTe is the nonparabolicity of the conduction and
light-hole bands near their extrema. 23

For the purposes of evaluating the defect concentrations, we have calculated K., using Eq. (10) with ml = 0.44333;
an empirical relationship for the dependency of the band gap on composition, z, and temperature34

E,(:, T) = E, - E.

= -0.302 + 1.93x - 0.810z2 + 0.832z3

+5.35 x 10- 4T(1 - 2z), (21)

which was fit for 4.2 < T :< 300 K; and a linear dispersion relationship for the conduction band with a chosen to
yield good agreement with experimental values of the intrinsic carrier concentrations3 for T < 400 K. We assume
that the intrinsic reaction constant thus computed is valid at temperatures up to 655*C, although there have been no
measurements above -400 K to substantiate this extrapolation.88

IV. CALCULATION OF DEFECT FORMATION FREE ENERGY: VIBRATIONAL CONTRIBUTION

When a defect is introduced into the lattice, the vibrational modes of the system are modified. We must include in
our calculation of the defect formation free energy a term that comes from modifications of the vibrational spectrum.
Most authors neglect this contribution to the formation free energy. As we will see in Section V, although the electronic
contribution to the free energy is dominant, the vibrational changes can be significant and they make a substantial
impact on the calculated magnitude of the defect concentrations.

Although ideally the vibrational contribution to the formation energy should be calculated within LDA on the
same footing as the static electronic contribution, including all of the anharmonic terms, this is a difficult and
computationally demanding task. Instead, we take an alternative approach and calculate the vibrational spectrum of
the zincblende lattice using Keating's valence force-field model for the short-range elastic interactions.3s Although
experimental elastic constants were used, LDA theory actually predicts the elastic constants within 10% for HgTe
and CdTe, so we could equally well have used the calculated values. Because we are dealing with an ionic crystal,
we have included a point-charge model to account for the Coulombic interactions. 37 Unlike the valence force-field
contributions to the dynamical matrix, the Coulomb contributions are long-range in nature and induce a macroscopic
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electromagnetic field, which results in a screening of the transverse optical phonons. The ionic charge is chosen to
yield agreement with experiments for the zone center splitting of the transverse and longitudinal optical phonons. A
Green's function approach is used to evaluate the lattice-defect induced modifications to the phonon spectrum; from
the perturbed phonon density of states the change in the vibrational free energy can be calculated. Like the electronic
energies, the calculations were done for pure HgTe and are assumed applicable to defect calculations in Hgo.&Cd0.JTe.
We expect that this is a reasonable assumption because the elastic constants for HgTe and CdTe are nearly identical.
In this paper we only consider the vibrational free energy of the neutral defects and assume

1, = FX1. = (22)

for all ionization states. Details of the calculations are given in the Appendix. Preliminary results of this model were
given previously.

14 ,17

V. RESULTS AND DISCUSSION

A. Formation free energies in HgTe

Calculated defect formation electronic energies in HgTe for the defect reactions listed in Table I and with A.R as
the free mercury atom, are listed in Table III. For all defects, the gradient correction for the 16-atom supercell is
calculated for the relaxed configuration, as determined by the LDA calculation.

Although the total electronic formation energies listed in Table III are important contributions to the formation
free energy, these energies alone cannot be used to asess the relative importance of the various defects in the solid.
This is mostly due to the free energy of the atom in the reference state (in excess of its free atom electronic energy)
that is not included in these electronic energies, and which is discussed in the next section. This point should be
obvious because we could have just as well defined our defect reactions with respect to the tellurium molecule in the
vapor phase and the HgTe solid, and obtained the corresponding reaction energies that would be quite different from
those in Table III.

The calculated phonon dispersion curve for HgTe is given in Fig. 1, and is in fair agreement with the experimental
results. The discrepancies with the experimental curves, in particular near the Brillouin zone boundary, can be
attributed for the most part to our neglect of long-range elastic interactions in the near-neighbor valence force-field
model.' The vibrational entropy and energy contribution to the defect formation free energy are calculated from the
density of phonon states; results at 500'C are given in Table IV. Eq. (A20) can be used to estimate the values at
other (high) temperatures.

B. Defect reaction constants in Hgo.sCdo.2 Te

The reaction constants for each of the defect reactions listed in Table I are calculated as a function of temperature,
where the reference state was taken as the monoatomic mercury vapor at pressure Pis. Electronic energies for the
neutral defect formation energies are taken from Table III. Vibrational free energies are calculated using the general
temperature expression, as discussed in the Appendix, although for the purpose of obtaining an analytical expression
for the reaction constants with the primary temperature dependency explicitly displayed, we have fit our results for
5000C to the high-temperature expression, Eq. (A20).

A third contribution to the formation free energy comes from the free energy of the mercury in the reference state,
less the electronic energy of the free mercury atom that is contained in the electronic defect formation energies. For
the vapor, we must include the translation free energy of the atoms. The chemical potential for monoatomic mercury
in the gas phase is given by the standard expression from statistical mechanics

AHg = kT In ( Pi ( h2  k )3/) (23)

Combining these three contributions to the reaction free energy we obtain the reaction constants for each of the
defect reactions. For example, for the neutral mercury vacancy in HgTe, we obtain

KvS [1V' ' = 9(l _.). (, 2VH~kT 3 /2

(1.27 x 10 To )exp (24)
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where we have taken gvx = 1, -FJr"4 = -2.09, 0 = 1.48 x 1022 cm-3, and where we have replaced exp(-FP'/kBT)

by exp(-(-0.2eV + 8.9kBT)/kBT)Isoo.c "" 1.27 x 10* T-. Reaction constants for the eight native point defects
considered in this paper are listed in Table V.

The reaction constants for the ionized defects are calculated using Eq. 6 for acceptors and its generalization for
donors. We define

Kx., = [X"] = [Xx] ' Zexp(zpF- - E- ...Es)

= KXx, L1.exp(zpr - E. - ...E8) (25)

and

KxO. [X="] = Kxx -x"exp(E• + ... + Ed' - zp,). (26)
9xX

C. Defect concentrations In Hgo.sCd0.2Te

Gibbs' phase rule tells us that for a system of three components (A, B, and C) and two phases (zincblende solid
and vapor) there are three degrees of freedom. In evaluating the defect concentrations in Hgo.sCd 0.2Te we have chosen
the temperature, the mercury pressure Pfig, and the alloy composition z as these specified variables; the tellurium
and cadmium pressures, the crystal stoichiometry, and the density of the various native point defects are determined
by these conditions.

The reaction constants in Table V are evaluated to determine the concert. ations of the various native point defects
as a function of temperature and pressure. The Fermi energy is determined by requiring charge neutrality. The
activation energies for the shallow donor and acceptor states are taken to be zero; the sensitivity of our results to this
assumption is discussed further below.

Figs. 2(a)-(c) show the defect concentrations at various equilibration temperatures. Pressure ranges are chosen so
as to stay within the stability region of the material.' At all temperatures and pressures considered, the dominant
defect is found to be the doubly ionized mercury vacancy, in agreement with previous interpretations of experimental;
our result confirms the generally accepted experimental observation that the mercury vacancy is responsible for the
p-type behavior of undoped HgCdTe equilibrated at high temperatures

At all temperatures, the second most dominant defect is found to be the tellurium antisite. The antisite concen-
tration decreases more rapidly with Pjs than does the mercury vacancy, and thus is most important at low mercury
pressures. As does the mercury vacancy, the tellurium antisite defect accommodates excess tellurium in the lattice,
and therefore its presence also shifts the stoichiometry towards the tellurium-rich side of the phase diagram.

The reason the tellurium antisite concentrations is so high deserves comment. The tellurium antisite formation
energy is larger than that for the mercury vacancy by 1 eV (Table III). However, as can be seen from Table V,
the pre-exponential factor of the reaction constant for the tellurium antisite is enormous. The large pre-exponential
factor results from the large phase space factor (entropy) gained by creating two free mercury atoms compared to
that lost by elimination of a formula unit. In contrast, the mercury antisite density is low, despite the fact that its
formation energy is quite small; this again is a result of the pre-exponential factor that in this case is very small.
Thus, it is clear that one must be cautious in deducing the relative populations of the various defects based on the
electronic contributions to the defect formation energies alone.

While the tellurium antisite is never found to be the dominant defect controlling the doping under equilibrium
conditions, it can introduce significant compensation at low mercury pressures. Moreover, the diffusion coefficient
of the antisite it expected to be quite small because the diffusion of an antisite will necessarily involve at least one
additional point defect, such as the mercury vacancy or the tellurium interstitial. Thus, the tellurium antisite may not
reach equilibrium densities for the times and temperatures corresponding to the Ic v-temperature (-250'C), high-
mercury-pressure anneals typically employed to reduce the mercury vacancy density. If tellurium antisite densities are
in fact equilibrated at a temperature at which the antisite diffusion effectively stops during cool-down from the growth
temperature, then the antisites may be frozen-in at higher, nonequilibrium concentrations. If such a freezing-in of
nonequilibrium antisites does occur, the tellurium antisite may in fact be the "universal" residual donor observed in
densities of 1- 014 cm-3 in material subjected to a low-mercury-pressure, high-temperature anneal, although it is
not clear why, for example, the frozen-in density of antisites would be the same for LPE material grown from both
mercury- and tellurium-rich melts. The tellurium antisite may also be the defect responsible for the n-type carrier
concentrations in as-grown MBE material,6 which is believed to be grown on the tellurium-rich side of the phase
diagram where antisite populations are highest.
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Annealing strategies for reduction of the tellurium antisite densities can be developed, and may be important if the
antisite is the residual donor. Consider, for example, a two-temperature annealing process in which a first anneal is
done under mercury-saturated conditions, but at the lowest temperature for which the antisite is able to equilibrate
in reasonable times. This anneal would serve to lower the antisite densities as much as possible. A second anneal
would be much like that currently employed, - that is, at -2509C under mercury-saturated conditions, - and would
serve to anneal out the mercury vacancies, leaving the antisite densities effectively unchanged.

At 500*C mercury interstitials are present at levels 10"0 cm-3 and at no temperatures are present at levels high
enough to significantly compensate the mercury vacancies, much less to turn the material n-type under equilibrium
conditions. Unlike the tellurium antisites, the mercury interstitials are relatively fast diffusers,2 and thus it is unlikely
that nonequilibrium densities of interstitials will be frozen-in. The mercury interstitial densities that we predict are in
quantitative agreement with those needed to explain the diffusion in Hg1 _,Cd.Te in the process simulator developed
by Melindez and Helms.3 9 There is some uncertainty in the quantitative predictions of the mercury interstitial densities
reported here because of the neglect of the alloy effects that we expect to be more significant than for the mercury
vacancy and tellurium antisite. Although this correction will be largest for the mercury interstitial surrounded by four
mercury first neighbors, it should also be significant for the interstitial surrounded by four tellurium first neighbors
because of the six cation second-nearest neighbors, which are only slightly more distant than the first neighbors.

The mercury antisite and the tellurium vacancy and interstitial densities are all quite low, never exceeding - 10s
cm-' at 500*C. The corrections to these predicted densities may be sizable because of alloy effects, but such corrections
should not significantly impact the densities of the mercury vacancy and tellurium antisite.

Fig. 2 shows the defect concentrations at the temperatures at which equilibration takes place; in Fig. 3 we show
the defect concentrations for material equilibrated at 500'C, then quench cooled to 77'C. We have assumed that
the total defect concentrations are frozen-in during the quench - for example [VHS]`6a = (V[l's] + [VAg] + [VYH 5]
is constant - but that the electrons and holes are allowed to reach a new equilibrium corresponding to the low
temperature. Fig. 4 shows the low-temperature hole concentrations for such quench-cooled materials as a function
of P1g and Tann,,l, compared with the experimental results of Vydyanath.1 The agreement of our theoretical results
with the experiments is remarkably good considering that our calculated results are obtained almost entirely from
first principles. Moreover, there is a significant uncertainty in the quenching efficiency of the experiments; thus, exact
agreement with the experiments is not a valid criterion for testing the accuracy of the theory.

From Fig. 4 one can see that for the higher annealing temperatures our calculations predict a different dependence
of hole concentration on the mercury pressure than is experimentally observed. The lower slopes for the theory result
from our finding that the material is extrinsic at the higher temperatures. If the material is intrinsic when equilibrated
as the experiments indicate, then [Vi' 6 ]h, oC P,",, as can be obtained from Table V, with pF independent of [VHg].
However, if the material is extrinsic when equilibrated - that is, with [h'] = 2[V,] - then from the reaction

Hg-V + 2h + Hg.,o, (27)

we see that [VH's][h]1 ] [V"V]' o P-1
The discrepancies between theory and experiments may be due to a number of factors. First, both uncertainty in the

quenching effciencies and analysis of the Hall data may account for some of the discrepancy. There are also a number
of uncertainties in the theoretical calculation that may account for the discrepancies. These include uncertainties in
the electronic and vibrational defect formation free energy, the ionization energies of the defects (which were assumed
to be zero in the above calculations), alloy effects, and finally the uncertainties in the intrinsic reaction constant.
These are discussed in turn below.

First it is interesting to examine the sensitivity of our predictions to the accuracy of electronic and vibrational defect
formation free energy. In Fig. 5 we have recalculated the 77 K hole concentrations as a function of the annealing
temperature with the electronic contribution to the mercury vacancy formation energy increased by 10%, and a rigid
shift upwards in our results by a factor of 2.5; such small changes result in better agreement with experiments. The
corrections to our calculated mercury vacancy and tellurium antisite formation energies due to alloy effects have not
yet been included in these calculations and are expected to be in the range of tenths of an eV, as discussed in Section
II C, and thus may account for the magnitude of correction used in this example. Preliminary estimates for the
corrections for going from the 16-atom to the 32-atom supercell are -0.1 eV for the cation vacancy and the tellurium
antisite as well. Finally, Jahn-Teller relaxation energies have not been included in the present work and they may
modify the electronic formation free energies. An increase in the effective vibrational frequencies[(' in Eq. (A20)]
can account for an upward shift in the densities. Such an increase may arise from differences between the neutral
and ionized defect vibrational free energies and, perhaps, anharmonic effects that may be large at defects such as the
vacancy where an atom is missing from the lattice. Thus, we see that our calculations agree with the experimental
data approximately to within the known uncertainties of the theory.
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Our results are also very sensitive to the intrinsic reaction constant, which in turn depends sensitively on the band
structure and its temperature dependence. HgCdTe is known to be anomalous in that its band gap is found to
increase with temperature at room temperature and below, and although there is no experimental information on the
temperature dependence of the gap at higher temperatures, we have assumed that Eq. (21) extrapolates to higher
temperatures. In addition, as discussed above, we have assumed a parabolic valence band, but a linear variation of
the conduction band, with the slope chosen to agree with the intrinsic carrier concentrations [with the energy gap
given by Eq. (21) at temperatures below 400 'C]. While this fit is quite good for the temperature range over which
it is fit (from 77 K to 400 K), the reliability of K., at 250*C and above for which we have presented our defect
density predictions is unknown. To demonstrate the sensitivity of our results to the intrinsic reaction constant we
have calculated the 77 K temperature hole concentrations with the conduction band density of states increased a
factor of ten and have found, except at the very highest temperatures, that the calculated hole concentrations vary as
Pgjl indicating intrinsic behavior at the annealing temperature, and resulting in better agreement with experiments.
Because our results depend sensitively on the intrinsic reaction constant, it is essential to establish a reliable prediction
of its value at the annealing and growth temperatures where equilibration of the defect densities takes place.3

We have suggested that nonequilibrium densities of tellurium antisites may be the residual donor, but they may
also be important SRH recombination centers. It is experimentally observed that the residual donor does not freeze
out even for samples cooled to 4 K, and therefore its first ionization state must resonate in the conduction band.
A SR.H recombination center in Hgl_,Cd:Te with z = 0.22 lies -25 meV below the conduction band edge, has a
larger capture cross section for electrons than holes, and typically has a density smaller than, but comparable to, the
residual donor density. The properties of the antisite are consistent with such a level: it is a donor; although we have
assumed here it is a single donor, it is likely that a second donor level is present in the gap and may be ionized at
the high processing temperatures; and the first ionization level may be resonant in the conduction band, although we
are unable to resolve this in our present calculations with certainty. A more quantitative prediction of the ionization
levels of the antisite is needed to correlate it with a SRH center.

A technologically important step in making IR detectors from Hg1 _-CdTe is a low-temperature mercury-saturated
anneal that is done to reduce the mercury vacancy concentrations. In Fig. 6 we show the defect concentrations for
material annealed at various temperatures along the mercury-saturated side of the phase diagram. In such mercury-
saturated anneals, if equilibrium can truely be reached, then the mercury vacancies will certainly be the dominant
defect, with the tellurium antisite density being negligible. However, as discussed above, it is unlikely that equilibrium
densities of antisites will be achieved at these relatively low temperatures.

The above analysis of defect concentrations can be repeated for a number of different situations. For example, we can
calculate the native defect densities with a donor or acceptor impurity present. At the high growth temperatures, the
impurity concentrations would have to be comparable to the vacancy concentrations to modify the high temperature
vacancy concentration. On the other hand, even impurity densities of the order of - 1015 cm-3 will alter the native
defect concentrations subjected to a low-temparature post-growth anneal. We can also repeat the above calculations
for reference state other than the mercury vapor. For example, in HgCdTe tellurium precipitates are known to form
as a metastable state upon cooling from high growth temperatures. 40 In the vicinity of a precipitate, the native defect
populations will be in local equilibrium with the tellurium solid, and defect concentrations for this reference state
can be calculated. Because this constitutes a nonequilibrium situation, on must address diffusion rates to assess the
extent of the modified defect atmosphere about a precipitate.

VI. SUMMARY AND CONCLUSIONS

We have made quantitative predictions of the native point defect densities in Hgo.sCdo. 2Te as a function of tem-
perature and pressure and find good agreement with the available experiments. We have substantiated the claim
that the primary defect is the mercury vacancy, and have identified the tellurium antisite as an important secondary
defect. A first-principles approach was used for most of the quantities calculated, with the only significant empirical
data being those needed to obtain the temperature-dependent intrinsic reaction constant.

Although we predict the undoped material to be always p-type, refinements in our calculations may show that the
antisite may dominate in the low-mercury-pressure region and turn the material n-type by a native defect; our current
accuracy is not sufficient to establish this. While most anneals of technological importance are done under mercury-
saturated conditions to reduce mercury vacancy concentrations, exploration of the tellurium-saturated region where
we predict the tellurium antisite densities become comparable to those of those of the mercury vacancy may help
confirm the presence of tellurium antisites.

A second means to explore the presence of tellurium antisites and their relationship to the residual donor is through a
careful set of experiments using two temperature anneals, as discussed above. Because we do not know the temperature
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at which diffusion of tellurium effectively stops, the temperature of the first anneal would have to be varied, as would
the annealing time; the mercury pressure could also be varied, although mercury-saturated conditions are those one
would eventually want to employ. The identification of the tellurium antisite as the residual donor can be made if the
donor densities in identically grown material were found to differ after the second anneal (using the standard conditions
for a mercury-saturated low-temperature anneal) depending on the conditions of the first anneal. A quantitative
analysis of this experiment would be quite difficult because, in addition to uncertainties in the temperature at which
the tellurium antisite equilibration stops, if the tellurium antisite diffuses via a vacancy mechanism, the diffusion of
the antisite will depend on the concentration of mercury vacancies present during the first anneal.

It would also be useful to perform high-temperature annealing as was done by Vydyanath,1 but instead of quenching
to 77 K and having to address the issue of quenching efficiency, follow the anneals by Hall analysis at the anneal
temperature. Recently, an attempt at such an experiment was made by Wienecke et &j.,,s although analysis of such
an experiment requires knowledge of the high-temperature intrinsic reaction constant.
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APPENDIX: VIBRATIONAL ENTROPY OF POINT DEFECTS IN SEMICONDUCTORS

As discussed by Keating,36 we assume the elastic energy for a zincblende structure can be written as

3,)2 + 30 ,(A(4 j:2
8d 8do0 i>il

where i and i' sum over all bonds, A(lF, = ff, - F,, with F and r° the bond vectors connecting adjacent atoms
in the distorted and equilibrium lattices, respectively. For first-neighbor interactions, the sum in the second term
runs over only those bonds connected to a common atom.

For a nonionic material, the normal modes for the displacement of the atoms are determined by solving the equation
of motion for the lattice cast in the usual manner in terms of the three-dimensional eigenvalue equation

w2 i;= D(k)G. (A2)

Here, DO(k) is the (elastic) dynamical matrix and

(A3)

is the polarization vector of the normal modes, where ti• is the displacement vector of the i~h atom. For the zincblende
lattice there are two atoms per unit cell, so i=1 or 2.

In terms of the elastic constants, C1 1 and C12 , the dynamical matrix for the valence force field model is given by

5dC1 1  
+d (Cil____

D*(i N/3,m,, +2 d I A "• (A4)
2d. 2d(C 11-Ci 2 )(I) 125dC(;J_"•mS-(k) + %(3m ýý "3Mtl, )

where d is the equilibrium bond length, ml and m 2 are the masses of the two atoms in the unit cell, I is the 3 x 3
unit matrix, and S is given by

*1 814 83
S = 84 81 82 (A5)

83 82 8 i)

with
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84) = edit+ + slga + egil', (Afa)

0 = = -+ e - e - e-•', (A6b)

830) = eCu•h - e12 + - e '1, (A6c)

and

84 (1) = eill, - eill. - eis + edIA4. (A6d)

The 4 are the vectors connecting atom I to atom 2 in the unit cell and are given by di = •[l11], d2 = 1[1il],
d3 = t[1il], and d4 = - [t[I], where a is the lattice constant.

While short-range elastic forces are described within the valence force field model, in crystal with an ionic contri-
bution to the bonding, Coulomb interaction must also be included in the dynamical matrix. The long-range nature of
the Coulomb interaction complicates the problem considerably. Using a pair-wise point charge model of the Coulomb
interaction, the Coulomb dynamical matrix is given by' 7 :

+ -4 .,-•.,(KII) (A7)
where

.. (~er = - _LIp3/2

X l He., (VIP-(E(l 3 PC) - Evr, K'))e c'-c""

I•+l" rex'p

exp( ))). (AS)

In the above equation I and K label the unit cell and basis atoms, a refers to the cartesian component, q, is the effective
charge, S(K, 1) = 1(c) + 1(Q) is the postition vector of the K'h atom in the Ph unit cell, G are the reciprocal lattice
vectors, vo is the unit cell volume, eo is the permitivity constant, and P is a (numerically determined) measure of the
Gaussian charge distribution used in the Ewald summation. H.,., (y) is given by the integro-differential expression

H IA.. 8  (f 2exp(-zx)dzx (A9)

The full dynamical matrix is given by the sum of the Coulomb and elastic contributions

D(i) = DCe() + D*(k). (AlO)

In the present problem we are interested in calculating the change in the vibrational free energy of the crystal lattice
due to the creation of a defect. This is done using the Green's function, which is most conveniently calculated in terms
of the density of states of the phonon system. For the ideal crystal without a defect, a Brillouin zone integration is
done to calculate the phonon density-of-states matrix, 0, from which the Green's function can be calculated via

Go(w2) = f'" 2Jýwa

+ e-2)nW )i (All)

where the singularity in the integral has been explicitly removed. The change in the total density of states when a
defect is introduced into the crystal can be deduced from Dyson's equation to obtain

Ae(w2 ) = !Im 4  ln (det(l - G°(w2)V)) (A12)
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where V i. the perturbation potential. In the present case we use a strictly site-diagonal perturbation potential
corresponding to the mass change due to the introduction of an isolated defect.

The partition function for the phonon system in the zincblende lattice is given by

z ! (A13)

where Wj are the normal modes of the system. The total vibrational entropy of the system is obtained from SL4 =
P(kaTInZ), which gives

Pt 'I'l kBYIn ( Isinhi -')

"+" Wdcoth ( '• •(AM4)

We convert the sum to an integral by the replacement

f-- p(w)dw = j 2p(w2)wdw (A15)

where p(W2) = TrG(w2 ). We are interested in the change in the vibrational entropy upon formation of a defect, in
which case we replace p by Ap to obtain

5'" = 2k, fo Ap(W2) (ifwcoth ( &,,y)

-in (2sin ( I- )) wdw. (Ala)

Similarly for the vibrational energy, we use the relationship UV' = -V( / lnZ to obtain

Uv'" = 2j 00p(W2) ( !coth ( ~) ) wdw, (A17)

with the change in the vibrational free energy FP' = UVO - TV'&.
While the calculation of the vibrational terms in this paper was done using the general expressions above, it is

interesting to examine the expression for the free energy in the high temperature limit, that is appropriate for high
growth and processing temperatures, and to examine the explicit temperature dependence of this term. In the high
temperature limit h,,.. < kBT and FPb reduces to

F'v" s 2ajT hIn (t--) p(w)wdw. (AFs)

This integral can be shown to be equal to

F"'b• ft kTnnln k-T(A9

where n,, is the number of phonon modes created oi &istroyed in the defect reaction of interest, and ri is an appropri-
ately weighted frequency. What enters the calculation of the defect concentrations is exp(-F_/pikT) which reduces
to

in the high temperature limit. For the defect reactions in Table I we obtain
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-3 V~g
3 VT'

n, = 6 HgT.
-6 Te~g

+3 Hg1

-3 Ter

(A21)

We will use this simple power-law dependence of Eq. (A20) to extract a simple power-law temperature dependence
of the reaction constants.
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FIG. 1. Calculated phonon dispersion curve for HgTe

FIG. 2. Defect concentrations at annealing temperature for material annealed at (a) 250*C, (b) 500*C, and (c) 655*C.

FIG. 3. Defect concentrations for 500*C anneal after quench cooling to TT K.

FIG. 4. Hole concentrations at 77 K for material equilibrated at various high-temperature annealing conditions. Experi-

mental results taken from Ref. (1).

FIG. 5. Hole concentrations at 77 K for material equilibrated at various high-temperature annealing conditions, calculated
with the electronic formation energy for the mercury vacancy increased by 10% and a rigid upward shift of the hole concentrations
by a factor of 2.2. This figure is meant to demonstrate the sensitivity of our results to small changes in our calculated parameters.
As discussed in the text, similar qualitative changes in our results can be seen by modifying the intrinsic reaction constant.

FIG. 6. Defect concentrations for material annealed along the mercury-rich side of the stability region at (a) the annealing
temperature and (b) after quenching to 77 K.

TABLE I. Defect reactions considered for compound AC. Notation is as follows: The primary symbol refers to the species,
the subscript refers to the site that the species occupies, with no subscript indicating that the species is occupying its usual
lattice site. V corresponds to a vacancy, I an interstitial, R some external reference state, and X a generic defect. Two types
of interstitial, are considered, both occupying tetrahedral sites, the first surrounded by four cation nearest neighbors, Ic, the
second surrounded by four anion nearest neighbors, IA. Following the notation of Kr6ger,2 1 an x superscript corresponds to a
neutral species, a prime to a negatively charged species, a bullet to a positively charged species, and e' and h* are an electron
and hole, respectively.

AC -- V'C+AR (1)
A -- AV4 ' (2)

2A -- AAC, (3)

2AC - C C + 2AR (4)

AR - Ax (5)
AR Al (5')
AC -- C;- + A (6)
AC -- + A, t (6')
X-- X5 + sho (7)

X- X" + Xe' (8)
e'+h- 0 (9)
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TABLE II. Bulk cohesive energies with and without the gradient corrections (GC) to the local density (LD), and comparison
with experiment.

Cohesive energy (eV/bond)
Compound LD GC Experiment
Si 2.58 2.31 2.32
Ge 2.22 1.88 1.94

AlP 2.35 2.05 2.13
AlAs 2.17 1.85 1.89
AlSb 1.91 1.61 1.76

GaP 2.08 1.76 1.78
GaAs 1.91 1.56 1.63
1 GaSb 1.70 1.36 1.48

InP 1.89 1.56 1.74
InAs 1.77 1.42 1.55
InSb 1.60 1.26 1.40

ZUS 1.82 1.53 1.59
ZUSe 1.64 1.35 1.29
ZnTe 1.43 1.15 1.20

CdTe 1.33 1.04 1.10

EgS 1.29 0.94 1.02
HgSe 1.19 0.84 0.85

sgTe 1.09 0.76 0.81

TABLE III. Neutral native defect formation energies for HgTe corresponding to reactions in Table I, where A is mercury, B
is tellurium, and the free atom is used as the reference state At. Local-density (LD) calculations were done using a 16-atom
supercell, unless otherwise noted. Gradient correction (GC) energies are discussed in the text. The most important ionization
states of the native point defects are also given.

Energy (eV)
Defect LD Relaxation' GC Totl Ionization

State
VHS 2.83 -0.05 -0.69 2.09 double acceptor'
VT. 0.99 -0.01 0.49 1.47 shallow donor
Hg•, -1.00 0 1.46 0.46 deep acceptor
Tesg 4.85 -0.19 -1.54 3.12 shallow donor
Rg., 0.75 -0.24 0.70 1.21 shallow donor

HgjT. 0.81 -0.31 0.62 1.12 shallow donor
TeCN, 4.78 -0.57 -0.83 3.38 shallow donor
TeiT,. .17 -0.84 -0.96 3.37 shallow donor

"Assumed to be a negative-U center
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TABLE IV. Entropy (S"") and energy (U"b) contributions to the vibrational free energy in HgTe at 500*C, for the defect

reactions listed in Table I.

Defect $'"(kr) U9"(eV)
Vi8  -8.9 -0.20
VT. 9.7 0.19

HgT. 18.7 0.39
TONS -18.7 -0.39
Hgj 9.5 0.20
TO, -9.5 -0.20

TABLE V. Reaction constants for neutral defects in Hgo.#Cdo. 2 Te corresponding to the defect reactions in Table I. The
vibrational contribution is calculated at 500"C, and fit to the high-temperature power-law dependence [Eq. A19] so as to show
the explicit temperature dependence. All calculations in the paper were done using reaction constants with the more exact
expression for the vibrational free energies.

Defect Reaction Constant
KVK -W [h,] w 1.14 x 10 0 T-iPjgexp(j)

VTM. Kv. = [v.] = 4.55 x 1014 TkP•gexp(-J.r)
"Hg. K,.x = [Hg;.] = 4.47 x 10 T1'Pexp(- j,)

Tex5  KT. - [Tems ]- 3.80 x 1037 T-'P-;exp(- 14)
Hg, Kn,5.- E•g.x,]-3.03 z 1014 r~gexp(-hj)

H g I. Kzg. -=[Hgr.]- 3.03 x 101 TIFzgexp(-IU4)

Tezx't, KT:., K = WTe7] & 7.23 x 10" T-Pj exp(-jI)

Tex,. KT x = L Tem, .- 7.23 x 102 T - i' exp(- p( )
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APPENDIX B

Summary of correspondence with Dr. M. Haase and Dr. Diego Olego
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Dr. Marcy Berding
Physical Electronics Lab.
SRI International, 410-33
Menlo Park, CA 94025

Febuary 2, 1994

Dr. Anis Husain
ARPA
3701 N. Fairfax Drive
Arlington, VA 22203

Dear Dr. Husain

In response to your suggestions at the meeting with Arden Sher last month, we have
spoken to both Dr. Diego Olego at Philips Lab and Dr. Michael Haase at 3M about
their work in ZnSe-based laser technology. These conversations were extremely useful
and both groups were interested in having us pursue solutions to a number of their
problems.

As a result of these conversations, we were able to identify several areas in which our
capabilities could be applied to current problems in ZnSe-based laser technology. These
areas are summarized below:

DOPING

Doping is still an area of great interest and remains a performance limiter. Although
some success has been achieved with nitrogen, what is limiting the achievable p-type
doping levels is still a mystery that both groups are anxious to have solved. Some curi-
ous effects have also been seen, such as a reduction in the p-type conductivity directly
under ZnTe contacts. While both groups were less optimistic about the prospects of
achieving high levels of p-doping with phosphorus or arsenic, they both thought it
should be an area of continued research.

We are currently working on the issue of doping under our ARPA sponsorship. The
problem of native defects is central to answering the compensation question. We will
also be looking at solubility limits of various dopants. Our proposed work on dopants
was of interest to both experimental groups, because it will provide guidance about
which dopant is most likely to succeed, and an opportunity for cost reduction. Un-
fortunately, aL our current rate of funding, it will be over a year until we finish these
calculations.

SRI International
333 Ravenswood Ave. e Menlo Park, CA 94025 * (415) 326-6200 e TWX: 910-373-2046 & Telex: 334486 9 Facsimile: (415) 326-5512
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To Dr. Anis Husain Febuary 2, 1994 Page 2

The efficiency of dopants is often related to complex formation. Both groups find there
is more nitrogen incorporation than there are active acceptors. In other materials this
is often the result of complex formation, either between impurity atoms or between an
impurity and a native point defect. We are currently calculating complex formation
energies in HgCdTe and heavily arsenic-doped silicon. Our current program on ZnSe
does not include work on complexes.

There a number of extensions we can make to our work to study the doping near
interfaces such as ZnSe/ZnTe; for example, once we have completed our current work,
it would be straightforward to extend our calculations to include band bending at the
interface, and to predict the resulting modifications in the equilibrium doping efficiency.
We can also explore nonequilibrium impurity and defect densities that may result when
growth occurs at temperatures below which diffusion of the relevant species stops. We
also have tools in hand to consider modifications to the bulk doping that results from
alloying ZnSe with other elements such as sulfur, cadmium, and tellurium.

DARK LINE DEFECTS

This was the area of most interest to both groups, since dark line defects are limiting
device lifetimes, preventing products from being brought to market. While the dark
line defects appear to be related to dislocations and perhaps native point defects, the
full relationship is still not understood. As devices degrade, the dark areas grow,
but it is not obvious whether it is dislocation multiplication or modifications to the
defect atmosphere around existing dislocations that result in the device failure. There
also seems to be a correlation of device failure with stacking faults originating at the
ZnSe/GaAs interface, and removal of these faults is of critical importance. While the
propagation of dislocations through the active QW structure is correlated with failure
of the devices, the means by which the devices fail is still not clear; that is, do the
dislocations short the junction, or do they just act as recombination sites.

The area of the impact of dislocations on device performance is an area we have been
just recently working in the context of HgCdTe double-layer heterojunction devices.
There we examined the impact of both the dislocation strain field (and the resulting
pieozoelectric charge) and core charges. This theory can be easily extended to ZnSe-
based laser structures. In addition, this work can be extended to examine the nature of
the material in the vicinity of the dislocation, for example native defect and impurity
populations, and their correlation with the observed growth in the area of dark line
defects. While the properties of stacking faults - for example, their energy - can be
examined using our tools, most of the technological concern is in elimination of the
stacking faults, which is closely coupled to the MBE growth process, discussed further
below.
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BAND STRUCTURE PROPERTIES

While many ZnSe-based alloys are used in current ZnSe-based lasers, very little is
known about the band offsets among the constituents. We were told that knowledge of
these offsets would greatly help in device analysis and design. In addition, more infor-
mation on the band gap variation with composition in alloys such as ZnSSe, ZnCdSe,
ZnSeTe, and ZnMgSSE would be extremely useful. The area of valence-band offsets is
also of interest for the new alloy system, ZnSeTe, being explored for its ease of p-type
doping and ability to make ohmic contacts

Once again, this is an area in which our alloy theory group has had extensive experi-
ence. We have calculated the band structure of most of the group IV, III-V, and II-VI
compounds and many of their alloys. Our results have been in quantitative agreement
with experiment. We have also applied these techniques to new alloy systems, such as
HgZnTe, and our results were later substantiated by experiments. Accurate calcula-
tions of band offsets among the II-VI compounds and their alloys are also possible using
a combination of our techniques: the first-principles full-potential linearized mufFin-tin
orbital and the tight-binding-based coherent potential approximation (CPA) method.

MOLECULAR BEAM EPITAXY (MBE)

The major successes to date in the ZnSe-based laser technology have been with mate-
rials grown by MBE and doped with nitrogen. While great progress has been made, a
number of issues relating to growth must still be addressed. One of these relates to the
failure mechanism and its relationship to stacking faults at the III-V/ II-VI interface.
While MBE growth parameters have been optimized to eliminate the formation of in-
terfacial phases such as Ga 2Se3 , elimination of stacking faults still remains an issue.
Issues of doping also closely relate to the growth process, as is well known from the
need to use a plasma source for nitrogen cracking to obtain the current nitrogen doping
levels.

The current limitation in the p-doping levels achievable may be related to the growth
itself, rather than a fundamental solubility limitation or native defect. In our past work
we have demonstrated that in some wide-gap ionic materials, atoms on the surface
have a mutually repulsive interaction, resulting in ordered arrays of surface atoms
and vacancies. The occurrence of this ordering depends on the surface orientation,
substrate temperature, effective atomic fluxes and surface stabilization, and surface
coverage. Substantial ordering may occur for only the cation or anion layer. When
present, this ordering will modify the nature of nonisoelectronic impurity and alloy
constituent incorporation into the layer. This theory predicts the observed ordering in
MBE-grown GaAlAs, and is currently being experimentally tested for silicon impurity
incorporation in GaAs.

B-4



To Dr. Anis Husain Febuary 2, 1994 Page 4

PROPOSED TASK LIST

Based on our discussions with the experimental groups, very briefly outlined above, we
have developed a task list for an extension of our current program on ZnSe. Following
the task list is an estimate of the man-years required for its accomplishment. We have
not provided a description of the methods we will employ in carrying out these tasks,
nor references to our prior publications in the relevant fields. However, in all of the
proposed tasks we have from moderate to extensive relevant previous work.

TASK 1

Devise means to improve p-doping in ZnSe-based materials, increasing dopant incor-
poration and efficiency.

1.1 Extend our current program to calculate the equilibrium solubility of isolated im-
purities for the most promising dopants in ZnSe, including nitrogen, phosphorus and
arsenic. Determine if currently realized limits for active nitrogen incorporation are due
to equilibrium solubility effects and, if not, what are those limits. Determine if any
impurity looks more promising than nitrogen.

1.2 Calculate the density of defect pairs, including impurity-impurity and impurity-
defect pairs, with the aim of determining if pairing is limiting the doping efficiency.
The impurities to be considered depend on the predicted solubilities in Task 1.1.

1.3 Based on results from Tasks 1.1 and 1.2, devise a strategy to improve the doping
levels obtainable in ZnSe-based materials.

1.4 Examine the nature of the ZnSe/ZnTe interface to seek an explanation for the
reduced solubility of nitrogen there. Propose means by which to increase the local
solubility.

1.5 Consider modifications to all of the above based on the fact that the material may
be in quasi-equilibrium during and following the low-temperature MBE growth.

TASK 2

Develop means by which to increase the operational life of ZnSe-based LEDs and
Lasers.

2.1 Extend our theory of dislocations and their impact on HgCdTe devices, to ZnSe-
based laser structures. Determine the means by which dislocations impact device op-
eration and correlate dislocation density with device efficiency.

2.2 Determine impurity and native defect atmospheres about dislocations due to both
Coulomb and strain fields. Consider how these atmospheres change during the op-
erational lifetime of devices, including effects of nonradiative-recombination-induced
bond-breaking near the p-n junctions and thermal heating.
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2.3 Based on the results of Task 4, examine mechanisms responsible for causing stacking
faults in MBE growth at the ZnSe/GaAs interface, and devise strategies to eliminate
them.

TASK 3

Provide parameters needed for design of present and future ZnSe-based Lasers.

3.1 Calculate the band structures of ZnSe and related alloys. Calculate the band-gap
bowing as a function of alloy composition. These calculations will also provide the
wave functions needed for other tasks listed below.

3.2 Predict the band offsets among the alloys and compounds relevant to the ZnSe-
based laser technology, as specified by the experimental groups.

3.3 Calculate the nonradiative lifetimes for the relevant mechanisms of Auger, and
Shockley-Read for impurities and native point defects present in significant concentra-
tions.

TASK 4

Optimize MBE growth parameters for incorporation of active dopants and for mini-
mization of structural defects.

4.1 Apply our current models of surfaces to ZnSe and related materials to predict the
nature of the surfaces during MBE growth. Determine the nature of the impurity-host
interactions on the surface and predict optimal parameters for active dopant incorpo-
ration.

4.2 Develop a full MBE growth simulator based on our current first-principles molec-
ular dynamics methods. Apply the simulator to the problem of the GaAs/ZnSe-based
material interface to predict the occurrence of stacking faults; optimize growth pa-
rameters to minimize stacking fault densities. Exercise the model in numerous other
applications relevant to the growth of ZnSe-based laser devices.

Assuming a 3-year effort, we have estimated 1.25 man-years to accomplish Task 1,
0.75 man-year for Task 2, 0.5 man-year for Task 3, and 1.5 man-years for Task 4.
While most of the work is devoted to the ZnSe-based systems, the development of an
MBE simulator under Task 4 would be applicable to many other systems in addition
to ZnSe.

Tasks I and 4 are especially computationally intensive, and will require the purchase
of a workstation with about 128 MBytes of memory. We estimate this would cost
approximately $50,000.

Although neither Dr. Haase nor Dr. Olego informed us that our conversations were
confidential, we hesitate to send them this letter because it contains information ex-
tracted from both conversations. However, we certainly will be comfortable if you
choose to send copies of this letter along to them for feedback.
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We are very excited about getting a start on the tasks outlined above. We feel these
tasks are in areas in which we can effectively collaborate with the experiment teams
and make a substantial impact on the technology. We will call you in few weeks to
obtain your feedback on this proposed program.

Sincerely,

Marcy Be rdig
Senior Research Physicist

Arden Sher
Associate Director,
Physical Electronics Laboratory

MB/mb

P. S. We have just receive a letter from Dr. Atsuko Ebina of Tohoku University who
is working on ZnSeSe and ZnSeTe and who has just obtained some very interesting
results on the band structure of these alloys as a function of alloy composition. A
copy of her letter and a couple of the numerous figures she sent us are attached. She
will be just down the road at Stanford University this summer working with Professor
Spicer and would like to collaborate with us. Because we have done extensi-ve work
in the theory of alloy ordering and phase transitions in the semiconductor alloys, we
know that we could have an effective and fruitful collaboration with her. The results of
such an effort would greatly benefit the U.S. experimental groups. As such, we would
like to include an additional task to collaborate with Dr. Ebina as well as the U.S.
experimental groups and to apply our alloy theory of the phase transition to the ZnSSe
and ZnSeTe systems. We expect this would require of the order of 0.5 manyear.
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